Những câu hỏi liên quan
giang đào phương
Xem chi tiết
Nguyễn Minh Quang
9 tháng 8 2021 lúc 9:19

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

Bình luận (0)
 Khách vãng lai đã xóa
Dương
Xem chi tiết
Kiệt Nguyễn
2 tháng 2 2021 lúc 11:11

Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)

\(\Rightarrow S=ab+2009\ge2007\)

Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2

* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1

Bình luận (0)
 Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Bình luận (0)
Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Bình luận (0)
Vân Khánh
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Nuyen Thanh Dang
Xem chi tiết
heo
25 tháng 5 2017 lúc 10:11

ko biết

Bình luận (0)
alibaba nguyễn
25 tháng 5 2017 lúc 10:33

Ta có: 

\(\hept{\begin{cases}\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\\\frac{b^2}{1+a}+\frac{1+a}{4}\ge b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a^2}{1+b}\ge\frac{4a-b-1}{4}\\\frac{b^2}{1+a}\ge\frac{4b-a-1}{4}\end{cases}}\)

\(\Rightarrow A=\frac{a^2}{1+b}+\frac{b^2}{1+a}\ge\frac{4a-b-1}{4}+\frac{4b-a-1}{4}\)

\(=\frac{3}{4}\left(a+b\right)-\frac{1}{2}\ge\frac{3}{4}.2\sqrt{ab}-\frac{1}{2}=\frac{3}{2}-\frac{1}{2}=1\)

Dấu = xảy ra khi \(a=b=1\)

Bình luận (0)
Phạm Thị Hường
27 tháng 5 2017 lúc 20:14

a=b=1 quá dễ

Bình luận (0)
Vu Huyen Anh
Xem chi tiết
Hoàng Như Quỳnh
19 tháng 7 2021 lúc 7:04

\(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2a+2b+2c}\)(cô si)

\(P\ge\frac{6^2}{2.6}=3\)dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)

vậy dấu "=" xảy ra khi \(a=b=c=1\)

\(< =>MIN:P=3\)

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
19 tháng 7 2021 lúc 9:44

Hoàng Như Quỳnh đấy có phải cô si đâu ? Bunya phân thức mà ~~

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : ... ( như bạn Hoàng Như Quỳnh ) 

Dấu "=" xảy ra <=> a = b = c = 2

Bình luận (0)
 Khách vãng lai đã xóa
Chuyện Rằng
19 tháng 7 2021 lúc 21:32

cô si phải như này nhé mấy nhóc 

Áp dụng bđt AM-GM : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\)

Tương tự và cộng theo vế : \(P+3\ge6< =>P\ge3\)

Dấu "=" xảy ra <=> a = b = c = 2

Bình luận (0)
 Khách vãng lai đã xóa
Bùi Đức Anh
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
22 tháng 4 2020 lúc 9:20

Áp dụng bất đẳng thức Cosi ta có : 

\(4\ge a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le2\Leftrightarrow ab\le4\)

Ta có bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

(Nhân chéo để chứng minh ) 

Áp dụng : 

\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{49}{2ab}+ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)

\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+8+\frac{17}{2.4}=\frac{1}{4}+8+\frac{17}{8}=\frac{83}{8}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

Bình luận (0)
 Khách vãng lai đã xóa
Thao Minh
Xem chi tiết
Thắng Nguyễn
16 tháng 10 2016 lúc 23:31

Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:

\(P\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

Lại có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=9\)

Mặt khác \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\Rightarrow\frac{1}{ab+bc+ca}\ge3\)\(\Rightarrow P_{Min}=30\)

Dấu = khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)